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ABSTRACT
Transparent liquid volume estimation is crucial for robot manipulation tasks, such as pouring. However, estimating the volume

of transparent liquids is a challenging problem. Most existing methods primarily focus on data collection in the real world, and

the sensors are fixed to the robot body for liquid volume estimation. These approaches limit both the timeliness of the research

process and the flexibility of perception. In this paper, we present SimLiquid20k, a high‐fidelity synthetic data set for liquid

volume estimation, and propose a YOLO‐based multi‐task network trained on fully synthetic data for estimating the volume of

transparent liquids. Extensive experiments demonstrate that our method can effectively transfer from simulation to the real

world. In scenarios involving changes in background, viewpoint, and container variations, our approach achieves an average

error of 5% in real‐world volume estimation. In addition, our work conducts two application experiments integrating with GPT‐
4, showcasing the potential of our method in service robotics. The accompanying videos and supporting Information are

available at https://simliquid.github.io/.

1 | Introduction

The ability to estimate the state of a liquid within a container is
essential for domestic service robots to handle liquid safely and
agilely. When pouring, they must assess the amount of liquid to
stop at the right time. In drink‐serving task, they need to
identify which containers are unfilled. However, liquid is dif-
ficult to perceive, especially in transparent containers. Most li-
quids are textureless and refractive, which makes them
challenging to detect using either RGB or depth‐based methods.

To estimate the liquid state, several previous works utilized
contact‐based measurement methods, such as force‐torque sensor,
accelerometer, and tactile sensor by Matl et al. (2019), Chen et al.

(2016), and Huang et al. (2022). These methods showed promising
accuracy in estimating liquid physical properties, while they can-
not operate without contacting with liquid containers. With the
advancement of deep learning algorithms, some works turn to
noncontact learning‐based approaches for liquid sensing, such as
liquid segmentation and volume estimation. These methods are
typically data‐driven, so a sufficiently diverse data set is necessary
for algorithm training. However, liquids are deformable and can
be contained in various shapes of containers, making it relatively
challenging to construct a large scale data set with diversity in
both liquid volume and container types.

For the liquid data set collection, previous works have adopted
various methods. Schenck and Fox (2017b) built a system for

© 2025 Wiley Periodicals LLC.

1 of 12Journal of Field Robotics, 2025; 1–12
https://doi.org/10.1002/rob.22548

http://orcid.org/0000-0002-0597-4512
mailto:lsj20@mails.tsinghua.edu.cn
mailto:ding.wenbo@sz.tsinghua.edu.cn
https://simliquid.github.io/
https://doi.org/10.1002/rob.22548
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frob.22548&domain=pdf&date_stamp=2025-04-15


liquid auto‐annotation, which utilized a RGBD camera cali-
brated with a thermal camera to generate pixel level annotation
for heated liquids. Some projects built annotation frameworks
with robotic arms, vision sensors, audio sensors and digital
scales to collect synchronized multi‐modal data for training
liquid perception models by Wilson et al. (2019); Liang et al.
(2020). Work by Narasimhan et al. (2022) trained a GAN model
to transform colored liquid to transparent liquid, for auto mask
annotation of transparent liquid. Despite these approaches
having achieved remarkable performance, they still have limi-
tations in generalization ability due to the limited‐scale data
collected from the lab scenarios. To solve this issue, we propose
a synthetic data set generation pipeline, which is able to build a
large‐scale liquid data at low cost for training data‐driven
models with strong generalization ability. Our pipeline is built
upon Blender, with Cycles engine supporting physically based
rendering (PBR). Before data set generation, the process involves
importing container CADmodels into Blender and extracting their
inner shells, which are then modeled to liquids with different
liquid PBR (Physically Based Rendering) materials. A splitting
plane is arranged for each container in the simulation and it
randomly moves along the z‐axis of the container to generate
random volume liquids. We developed a data generation frame-
work based on BlenderProc, proposed by Denninger and
Sundermeyer (2022), which renders hundreds of photo‐realistic
liquid‐container per hour. Moreover, the framework provides
multi‐modal accurate annotations, including segmentaions, poses
and bounding boxes for both liquids and containers, along with
liquid volume annotations at milliliter‐level precision. Based on
the pipe, we built a large scale data set, SimLiquid20k, containing
20 kinds of containers and four common liquids.

We developed a YOLO‐based model trained on the SimLi-
quid20k to demonstrate its Sim2Real performance. Our model
takes RGB or RGB‐D images as input and outputs multiple
prediction, including class labels, bounding boxes, segmenta-
tion masks, and liquid volume. To enable end‐to‐end training
and inference of the multi‐task model, we implemented a
hybrid loss function specifically tailored for liquid state esti-
mation. We evaluated the model's performance through com-
prehensive benchmarking in both simulated and real‐world
environments. Evaluation on the synthetic validation data set
shows that the model accurately predicts liquid volumes using
both RGB and RGB‐D input modalities. The real‐world
benchmark demonstrates that our model estimates the liquid
volume across different containers with a mean error of less
than 5%. Furthermore, our model is robust across various
camera views. To prove the practical value of our approach, we
conducted pouring experiments with the assistance of the LLM.
Results indicate that incorporating our liquid estimation model
substantially improved the LLM's decision‐making robustness
in the liquid manipulation task.

To summarize, the contributions of this paper are:

1. We propose a synthetic data set generation pipeline for
liquid state estimation, constructing a large‐scale data set
across various containers, with high‐fidelity images,
precise ground‐truth annotations, and extensive domain
randomization across illumination conditions, back-
grounds, camera viewpoints, and liquid volumes.

2. We design a novel neural network that simultaneously
addresses multiple tasks, including container detection,
liquid segmentation, and volume estimation, enabling
accurate liquid state estimation in complex environments.

3. We conduct comprehensive benchmarking in simulation
and real‐world settings, demonstrating the robust sim‐to‐
real transfer ability of our data set and network. Fur-
thermore, we integrate the network with a large language
LLM for pouring manipulation, showcasing the practical
applicability of our approach in domestic service robotics.

2 | Related Work

2.1 | Transparent Object Perception

In the field of robotic perception, transparent object sensing is a
challenging task due to the complex optical properties of
transparent objects, such as refraction and reflection. The tex-
tures of these objects are highly influenced by various
environmental factors, leading to significant variations. Fur-
thermore, transparent objects are non‐Lambertian, meaning
their light paths do not conform to the geometric assumptions
made by classical stereo vision algorithms. This characteristic
makes it difficult for standard 3D sensors to accurately estimate
the depth of transparent objects, often resulting in noise or
distortion.

Previous works, such as those by Xie et al. (2020) and Liao et al.
(2020), have focused on the perception of transparent contain-
ers and developed methods for tasks like transparent object
segmentation. Similarly, Albrecht and Marsland (2013) as well
as Dai et al. (2023) have worked on depth estimation, while Liu
et al. (2020) have contributed to keypoint detection. However,
collecting real‐world data set for transparent object perception
and manipulation tasks is a time‐consuming and labor‐
intensive process. With the advancement of computer graphics
simulation tools, many studies have adopted synthetic data set
to support related tasks. Examples include ClearGrasp by Sajjan
et al. (2020), a synthetic data set for depth completion, Dex‐
NeRF by Ichnowski et al. (2021), a synthetic data set for
transparent object detection and localization, and the Omni-
verse data set proposed by Zhu et al. (2021), a large‐scale syn-
thetic data set containing 60K images generated using the
NVIDIA PhysX engine. Recent work by Yu et al. (2024) further
advances this field by proposing a method for depth restoration
of hand‐held transparent objects, specifically targeting human‐
to‐robot handover scenarios. This highlights the growing
importance of synthetic data set in enabling robust and reliable
robotic manipulation of transparent objects. Their approach
leverages synthetic data to train models that can accurately
reconstruct depth information for transparent objects, even in
dynamic and interactive settings. This highlights the growing
importance of synthetic data set in enabling robust and reliable
robotic manipulation of transparent objects. Such synthetic
or simulated data set significantly save time and financial
resources. In particular, when transparent objects contain
contents like liquid, high‐quality synthetic datasets play a cru-
cial role in bridging the gap between simulation and real‐world
scenarios.
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2.2 | Transparent Liquid Perception

Compared to transparent object perception, sensing transparent
liquid is often more challenging due to the lack of fixed shapes
and geometric characteristics. Work by Kennedy et al. (2017)
shows that colored liquid typically have distinct boundaries that
facilitate their segmentation from the background or other
objects. However, transparent liquid lack such clear boundaries,
making its perception significantly more difficult. Additionally,
the instability of liquid flow often leads to more complex optical
effects for transparent liquid compared to transparent objects.

One approach to sense transparent liquid is the use of thermal
imaging, as demonstrated by Schenck and Fox (2017a, 2017b),
to obtain liquid labels. However, frequently heating liquids in
real‐world scenarios is a cumbersome and impractical process.
Another method involves using depth sensors to acquire
transparent liquid labels, as explored by Do and Burgard (2019),
as well as Dong et al. (2019), but the depth data for transparent
objects and liquid often suffer from significant distortion and
noise. In some experiments, Kennedy et al. (2019) employed
real‐time weighing of containers filled with liquids to determine
the liquid weight. This approach necessitates additional ex-
perimental equipment, making the data collection and experi-
mental processes less convenient.

2.3 | Volume Estimation in Robotics

When a robot grasps and pours a container filled with liquid,
understanding the volume of liquid inside the container is often
crucial for subsequent operations. To perceive liquid volume,
previous studies, such as Zhu et al. (2022), have attempted to
estimate the amount of liquid poured out using force sensors
embedded in robotic arms. Other approaches, like those proposed
by Brandi et al. (2014), estimate liquid volume based on motion
and CAD models. Additionally, some methods, including Zhu
et al. (2022), utilize multi‐modal fusion techniques for liquid vol-
ume estimation. Additionally, thermal imaging has been em-
ployed to accurately detect the height and volume of hot water.

However, these approaches often rely on nonvisual sensors or
additional information and typically place sensors at positions

that directly interact with the liquid container, such as the
gripper of a robotic arm. This setup imposes constraints on both
visual and sensory capabilities. In contrast, humans can roughly
estimate liquid volume using only visual perception. Thus, we
hypothesize that liquid volume can be estimated using only
RGB or RGB‐D images as input. Furthermore, most prior
studies collected data in real‐world environments, making
transparent liquid estimation tasks time‐consuming and labor‐
intensive.

To address these challenges, we generated a synthetic data set
for transparent objects and liquids using image simulation
software. We carefully calibrated parameters such as lighting
and background to minimize the gap between the synthetic data
set and real‐world scenarios. In our volume estimation task, the
camera is mounted with flexible positioning rather than being
fixed relative to the robotic arm, allowing degrees of freedom
comparable to human visual mobility.

3 | Methodology

3.1 | Data Set Generation and Annotation

Training a liquid volume estimation model requires a large
data set, which is challenging for manual annotation meth-
ods. To address this challenge, we generate a sizable syn-
thetic liquid estimation data set, SimLiquid20k, using
BlenderProc. SimLiquid20k is a high domain randomization
data set comprising 20,000 synthetic images in a variety of
environmental conditions.

As shown in Figure 1, SimLiquid20k contains 20 kinds of
containers and four types of liquids: clean water, milk, orange
juice, and red wine. These non‐transparent liquids were added
to the model to improve its perception of the liquid within
the cups.

To ensure diversity in lighting and background, 773 HDRI
panoramic photos are randomly applied to each scene as part
of the data set generation procedure to guarantee backdrop
and illumination variation. Cameras are placed around the
target items in each scene using a shell‐based sampling

FIGURE 1 | Illustration of data set generation. [Color figure can be viewed at wileyonlinelibrary.com]
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distribution. To simulate naturalistic viewing angles and add
variability to the data set, slight rotations and perturbations
are applied to the cameras. Liquid volumes are sampled
within predefined ranges specific to each cup. The variation
in volume is achieved by dynamically adjusting the height of
the liquid's surface plane.

In addition to the generation of synthetic images, we also col-
lected bounding box annotations, segmentation masks, volume
labels, and depth images during the data set creation process,
ensuring a comprehensive set of ground truth data to support
the training and evaluation of a wide range of tasks. To further
enhance the data set's applicability, the pose of each container
was also recorded. While this study does not specifically address
grasping tasks, the inclusion of pose data would facilitate future
research in areas such as robotic manipulation and pose
estimation.

To enhance the generalization capability of SimLiquid20k,
we randomly combined 20 prepared containers and four
types of liquids to construct our data set, as illustrated in
Figure 2. We ensured that different containers and liquids
appeared with nearly uniform frequencies, aiming to com-
prehensively represent the relevant features of both
containers and liquids. Additionally, due to the volume

constraints of each container, a maximum capacity was pre‐
defined for each container, and the liquid volumes were
randomly sampled within this range. The distribution of
liquid volumes in our data set is shown in Figure 3. Due to
the inclusion of containers with varying sizes, the distribu-
tion of liquid volumes exhibits a decreasing trend as the
volume increases.

3.2 | Data Processing

The RGB(‐D) images generated from Blenderproc have a reso-
lution of 960× 600. To standardize the data dimensions, we
rescaled the original images to 640× 640 while preserving the
aspect ratio, padding the remaining areas with plain back-
ground. Accurately constraining volume predictions to a mini-
mal error margin using visual input alone presents a
considerable challenge. Although the impact of resolution on
volume estimation is not explicitly addressed in this study, we
acknowledge it as an important factor that warrants further
investigation.

To eliminate invalid depth values, we applied a clipping
operation to the collected depth maps, restricting the maxi-
mum depth to 50 cm. Subsequently, both RGB and depth

FIGURE 2 | Illustration of the training data distribution. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 | Illustration of the liquid volume distribution in SimLiquid20k. [Color figure can be viewed at wileyonlinelibrary.com]
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images were normalized and concatenated at the input stage.
Depth maps acquired from simulation environments and
those captured by real‐world depth sensors often exhibit
substantial discrepancies, which complicates direct transfer-
ability. However, during training within the simulated en-
vironment, no additional scaling was applied to either the
depth or RGB images. In our input design, we assume that
both types of images provide an equivalent amount of
information.

3.3 | Liquid Estimation

From the perspective of robotic perception, our goal is to design
a function f o( ) that can predict the volume of liquid within a
container manipulated by the robot based on observational
data collected from sensors in the current environment. This

function is implemented as a YOLO‐based deep neural network
as shown in Figure 4, leveraging its end‐to‐end learning capa-
bilities to efficiently process sensory inputs and generate accu-
rate volume estimations.

In liquid perception tasks, we consider depth information to be
crucial. For monocular tasks, depth is an indispensable com-
ponent for reconstructing 3D scene information from images.
Therefore, in our model design, we opted for two input modes:
RGB and RGB‐D.

Our network architecture consists of three main components: a
backbone for down‐sampling, a neck for feature fusion, and a
detection head based on the fused features. As shown in Fig-
ure 4, the detection head outputs feature vectors at three dif-
ferent scales. From these scale‐specific feature vectors, we
extract predictions for bounding boxes, class labels (cls),

FIGURE 4 | Illustration of our working pipeline. (a) Multi‐task features are extracted from the RGB and depth images. Segment head predicts the

output of yolo‐based model. (b) SimLiquid20k data set is generated by Blenderproc with randomization. (c) Multi‐task loss function enables

simultaneous output of the bounding box, mask, and volume of the target. [Color figure can be viewed at wileyonlinelibrary.com]
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confidence scores (conf ), segmentation masks (mask), and liq-
uid volume (vol).

The corresponding losses are computed based on these predictions,
and we integrate the weighted losses using λ Ld d into a total loss
function for multi‐task learning, defined as L λ L= d D d dtotal ,
where L total enables the network to jointly learn multiple tasks and
accurately estimate the liquid volume within the container.

3.3.1 | End‐to‐End Prediction

3.3.1.1 Design of the network. In our network, the RGB(‐D)
images first pass through the Focus module when entering the
YOLOv5 Backbone. The Focus module slices the image ac-
cording to a predefined stride and concatenates these slices into
a new feature map, effectively condensing the high‐resolution
spatial information from the original image. The RGB(‐D)
image is encoded by three hierarchical down‐sampling mod-
ules, producing three multi‐scale feature representations.

Subsequently, these feature tensors are processed through up‐
sampling or down‐sampling operations to achieve feature fusion.
Finally, the network outputs prediction tensors at three different
scales. To compute the error between the predicted results and the
ground‐truth labels, we design a hybrid loss function combining
mean‐squared‐error (MSE) and binary cross‐entropy (BCE). This
hybrid loss is well‐suited for multi‐task learning, enabling the
network to accurately estimate the volume of the liquid.

3.3.1.2 Parameter Settings. We conducted our network
training tasks on an NVIDIA A6000 GPU. To accelerate the
training process and achieve better convergence, we utilized
pre‐trained weights from an object classification model trained
on ImageNet as the initialization for our network. The batch
size was set to 16, and the training was performed for 100
epochs. The initial learning rate was set to 0.01, and we em-
ployed a cosine learning rate scheduler to dynamically adjust
the learning rate during the training process.

3.3.2 | Multi‐Task Learning

Our network supports multi‐task learning, enabling it to simulta-
neously output the bounding box, mask, and volume of the target.
In a specific liquid detection scenario, the liquid volume is often
strongly correlated with the mask of the liquid and the mask of the
container. For a fixed container volume, the liquid volume can
be estimated using the mask. By sharing feature vectors across the
three task outputs, we want to enhance the performance of the
volume estimation task. In our network, we employ multi‐task
learning techniques by combining MSE and BCE losses to optimize
the shared representation and improve overall performance.

The total loss function is expressed as:

∈

  λ L= ,
t D

d dtotal (1)

where D = {box,obj, cls, seg,vol} represents the set of all loss
components. These include the bounding box regression loss

( box ), objectness loss ( obj ), classification loss ( cls ), mask
segmentation loss ( seg ), and volume regression loss ( vol ). The
objectness loss ( obj ) refers to the confidence score that indi-
cates the likelihood of an object being present in a predicted
bounding box. In other words, it is a measure of how confident
the model is that a given region contains an object of interest. In
this formulation, λd represents the weight assigned to each loss
component, and Ld is the loss value for each component ∈t D.

Our loss function primarily utilizes two types of loss formula-
tions: BCE and MSE. These are used to compute the different
components of the total loss.

The objectness loss, classification loss, and segmentation mask
loss can be expressed as:

 
N

p t=
1

BCE( , ),
i

N

i iBCE

=1
d, d, (2)

where   , , andobj cls seg follow this form, with respective p id,

and t id, representing objectness, class labels, and segmentation
masks.

The volume loss,  vol , is calculated as the MSE between the
predicted volume p vol and the target volume t vol :

 
N

p t=
1

( − ) ,
i

N

i ivol

=1
vol, vol ,

2 (3)

where N is the number of non‐zero target volumes, p ivol , and
t ivol , represent the predicted and true volumes for the i‐th
target, respectively. Only non‐zero target volumes are
included in the computation to avoid introducing bias from
empty objects.

4 | Experiments

To evaluate the performance of our YOLO‐based liquid vol-
ume estimation network, we conducted experiments in both
simulated and real environments. First, we tested the net-
work's volume estimation capability in the simulation en-
vironment. Next, we transferred the trained network to real‐
world scenarios to assess its sim‐to‐real transferability using
the SimLiquid20k data set. Finally, we demonstrated several
applications integrated with LLM based on liquid volume
estimation to showcase the considerable practical value of
our method.

4.1 | Simulation Experiments

4.1.1 | Validation Data Set

Consistent with the training data set, we also used BlenderProc
to generate our test data set. The test data set consists of 730
images, and the container and liquid volume distributions are
shown in Figure 5. Since data with volumes greater than
1000 mL make up a small proportion of the data set and are
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rarely involved in most operational tasks that require handling
excessively large liquid volumes, we only analyzed the data with
volumes below 1000 mL in the subsequent tests.

4.1.2 | Performance Across Different Inputs

To investigate the role of depth in the volume estimation
task, we applied various data processing techniques. Since
depth sensors often suffer from significant distortion when
capturing depth information of transparent objects, we spe-
cifically processed the depth data for these objects. We set the
depth values in the transparent object mask region to zero,
thereby creating a lossy simulated depth map. In real‐world
scenarios, depth completion techniques are commonly used
to restore depth information for transparent objects. To
simulate this, we employed TransCG by Fang et al. (2022) for
depth completion on the lossy simulated depth map, mi-
micking the depth map obtained after completion in a real‐
world environment.

The depth‐to‐3D conversion process is mathematically modeled
as follows: Let D be the depth image, a matrix of size H W× ,
where each element Di j, represents the depth (distance
in meters) of the pixel at row i and column j. Using the cam-
era's intrinsic parameters f f c, ,x y x , and cy, the camera intrinsic
matrix K is given by:













f c

f cK =

0

0

0 0 1

.
x x

y y (4)

To project a pixel i j( , ) from 2D image coordinates to 3D space,
we use the inverse of the intrinsic matrix K−1 and the depth
value Di j, . The 3D coordinates X Y Z( , , ) of the pixel i j( , ) are
computed by:

























X
Y
Z

i
j DK=

1

,i j
−1

, (5)

where Di j, is the depth value at pixel i j( , ), and X Y Z( , , ) are the
3D coordinates in the camera frame. This mathematical relation-
ship helps in reconstructing the spatial structure of the scene.

Additionally, we recorded the camera intrinsic parameters in the
simulation environment, allowing us to reconstruct spatially
scaled images from the RGB and depth images.

Based on the recorded relative error shown in Table 1,
depth estimation plays a critical role in improving the
accuracy of liquid volume prediction. The relative error is
calculated as:

   
N

p t

t
=

1 −
,

i

N
i i

i
vol

=1

vol, vol,

vol ,

(6)

where N is the total number of samples in specific range. This
computation allows for a consistent measure of prediction
accuracy across different liquid volumes.

The inclusion of depth information, as provided by RGB‐D
methods, significantly enhances the volume estimation
compared to RGB alone. In any liquid volume range between
50 and 1000 mL, the average relative error of the RGB‐D
method with depth data is consistently lower than that of
RGB alone, suggesting that depth information helps in dis-
tinguishing liquid from background, leading to more accurate
volume predictions.

Among the RGB‐D variants, the RGB‐D(reconstruct) method,
which focuses on reconstructing depth with higher fidelity,
consistently performs better than RGB‐D(lossy). This indicates
that reconstructing depth with more accuracy contributes to
improved liquid volume prediction, while lossy depth repre-
sentations introduce additional errors.

However, the inclusion of depth scaling (RGB‐D(scale)) intro-
duces a challenge. While scaling depth to real‐world units may
seem advantageous, it results in a performance drop in com-
parison to RGB‐D. This drop in performance with scaled depth
data may indicate that depth scaling introduces additional
noise, which negatively affects the prediction. The effectiveness
of depth scaling likely depends on the accuracy of the depth
recovery process, which may require more advanced methods,
such as 3D networks, to handle the spatial complexity of scaled
depth maps. Without such advanced techniques, the use of
scaled depth could hinder the overall performance of volume
prediction.

FIGURE 5 | Illustration of validation data distribution. [Color figure can be viewed at wileyonlinelibrary.com]
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4.2 | Real Experiments

4.2.1 | Hardware Setup

The hardware setup for the real‐world experiments is shown in
Figure 6. A RealSense D415i camera was mount near the ex-
periment platform to capture images with a resolution of
640×480. We use a soft gripper as the robotic gripper, which is
fixed to the end‐effector of the UR3 robotic arm. The experi-
ment platform was covered with a black curtain to minimize
the impact of external light sources and surrounding scenes on
the experimental results.

In our experiments, due to the limited size of the platform, large
containers could not be fully captured by the camera. As a
result, all containers used in the real‐world experiments had a
volume of 300 mL or less. Based on our synthetic data set, we
selected three containers with sizes and shapes similar to those
in the data set, though each container differed in shape. To
accurately measure the required liquid volume, we used a
measuring cup with a clear scale as the reference for liquid
volume.

4.2.2 | Liquid Estimation

In this experiment, due to constraints imposed by the physical
setup, such as the limited size of the experimental platform and
the distance between the camera and the containers, we
selected three transparent containers with volumes not ex-
ceeding 300 mL. These containers were chosen based on their

similarity to the shapes and sizes of containers in a simulated
data set, though it is important to note that the containers in the
real‐world experiment were not identical in shape.

The focus of this experiment was not to evaluate volume esti-
mation for very low liquid levels because at such low volumes,
the liquid surface becomes difficult to distinguish from the
bottom of the container. The transparent bottom of the con-
tainer often introduces complex optical refractions, making it
challenging to clearly differentiate between the liquid surface
and the container boundary. As a result, we chose to start

TABLE 1 | Experimental results on relative errors for different inputs in different liquid volume ranges.

Volume Range RGB RGB‐D RGB‐D(Lossy) RGB‐D(Reconstruct) RGB‐D(Scale)

50–100 mL 0.28 0.23 1.48 0.29 0.31

100–150 mL 0.22 0.17 1.06 0.26 0.25

150–200 mL 0.19 0.10 0.47 0.25 0.21

200–250 mL 0.15 0.11 0.50 0.27 0.20

250–300 mL 0.15 0.13 0.33 0.24 0.20

300–350 mL 0.12 0.11 0.47 0.27 0.20

350–400 mL 0.08 0.08 0.39 0.19 0.12

400–450 mL 0.06 0.04 0.25 0.10 0.06

450–500 mL 0.08 0.09 0.32 0.21 0.15

500–550 mL 0.13 0.10 0.30 0.21 0.15

550–600 mL 0.07 0.07 0.23 0.17 0.12

600–650 mL 0.11 0.08 0.24 0.19 0.14

650–700 mL 0.06 0.06 0.29 0.14 0.09

700–750 ml 0.08 0.06 0.40 0.19 0.08

750–800 mL 0.08 0.14 0.29 0.14 0.16

800–850 mL 0.08 0.06 0.27 0.17 0.09

850–900 mL 0.03 0.02 0.14 0.07 0.02

900–950 mL 0.07 0.05 0.64 0.17 0.08

950–1000 mL 0.03 0.04 0.19 0.11 0.07

FIGURE 6 | Hardware setup of real experiments. [Color figure can

be viewed at wileyonlinelibrary.com]
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volume measurements from 90 mL and continued to assess
volumes at 120, 170, and 220 mL.

This experiment is a model‐based task. As illustrated in
Figure 7, we selected three containers with similar sizes but
slightly different shapes, and conducted liquid volume predic-
tion accuracy tests under both plain and complex backgrounds.

In real‐world scenarios, to mitigate temporal jitter during the
prediction process, we employed a Kalman filter to obtain stable
outputs. During testing, we recorded the prediction results over

a period of time, randomly selecting 10 frames from this
sequence. The final prediction was obtained by averaging the
results of these 10 frames. The corresponding prediction results
are presented in Table 2.

The experimental results indicate that our model provides
accurate volume predictions with relatively small errors across
different containers and volume ranges. The error margin typ-
ically falls within a reasonable range, with most errors under
5%. For instance, in the 220 mL range, the relative errors for all
three containers are below 5%, with Container 1 having the

FIGURE 7 | Transparent liquid volume estimation across different backgrounds, containers, and liquid volumes. In our experiments, we selected

three containers with slightly different shapes and conducted real‐world tests under two types of backgrounds: a plain background and a complex

background. We evaluated the system's performance at four different liquid volumes: 90, 120, 170, and 220 mL. [Color figure can be viewed at

wileyonlinelibrary.com]
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smallest error of only 0.76%. These results demonstrate the
effectiveness of our volume estimation approach in real‐world
scenarios.

4.2.3 | Multi‐View Estimation

To evaluate the robustness of the liquid volume estimation model
under varying camera perspectives, we conducted an experiment
where the liquid volume was fixed at 120 mL. The camera's
position relative to the container was systematically adjusted
within a specified range to simulate different viewpoints.

The results, as shown in Figure 8, demonstrate that the model
maintained stable performance across different camera perspec-
tives, with the estimated liquid volume falling within the range of
114.58–122.94 mL. This indicates that the model is robust to var-
iations in camera angle, which is essential for real‐world appli-
cations where the camera's position may not be fixed.

4.2.4 | Application

In application‐focused experiments, we combine liquid volume
estimation with LLM to enable task‐specific action inference for
robotic manipulation. Upon receiving the estimated volume
range, we submit the information to the LLM, which analyzes
the liquid volume range alongside predefined user require-
ments. The LLM is tasked with reasoning and inferring the
appropriate actions needed to interact with the liquid, ulti-
mately generating commands for the robotic arm.

To ensure the accuracy of the predicted liquid volume and to
mitigate potential negative effects from depth inaccuracies, we
positioned a calibrated camera directly above the experimental
setup. This camera placement minimizes the impact of optical
distortions caused by the transparent containers.

As shown in Figure 9, we designed two experiments involving
interaction with the LLM. The first task involves combining two

100 mL volumes of water, while the second task involves the
robotic arm performing a coffee brewing task. In the first task,
two 100 mL cups of liquid are placed on the surface. Using our
network, the LLM is provided with the target volume of 200 mL.
The LLM then determines that the two liquids can be combined
to achieve the desired volume and instructs a robotic arm to
perform the task. In the second task, the LLM is informed that
100 mL of water needs to be poured into a cup containing coffee
bean. The LLM then drives the robotic arm to carry out the
pouring task, stopping once the estimated liquid volume
reaches 100 mL.

4.2.5 | Limitations

Volume estimation is a task that involves spatial scaling, where
depth information or prior knowledge about the scale of sur-
rounding objects plays a crucial role. However, depth infor-
mation obtained from simulation software exhibits a significant
style difference compared to depth data captured from real‐
world depth sensors. This disparity limits the sim‐to‐real
transferability of transparent object perception and liquid vol-
ume estimation tasks. Bridging the gap between simulated and
real‐world depth data is an important research area for im-
proving liquid volume estimation.

In the tasks deployed in this paper, our approach is a model‐
based learning method, which requires a sufficiently large data
set of containers with similar shapes and sizes to complete the
task. However, when faced with untrained containers that have
similar shapes but significantly different sizes, the performance
tends to be suboptimal. We believe that providing the network
with a fixed size reference or spatial scale perception, and
leveraging prior knowledge to estimate the container's volume
as well as the liquid volume, is a crucial component for
achieving generalized liquid volume estimation across various
containers.

During the pouring process or when the liquid surface is
unstable, the liquid volume estimation often becomes
inaccurate. This is because the liquid's dynamic nature and
surface fluctuations introduce additional challenges that our
current approach struggles to address effectively.

5 | Conclusions

Transparent objects and liquids possess complex optical
properties, and liquid volume perception has always been a
significant challenge. In this paper, we propose an end‐to‐end,
model‐based approach that can predict the liquid volume in a
container using monocular visual information. Acquiring liquid

TABLE 2 | Experimental results of predicting the average of ten

data in different containers in different liquid volumes.

Volume
range Container1 Container2 Container3

90 mL 99.32 mL 98.26 mL 91.11 mL

120 mL 122.79 mL 118.04 mL 116.21 mL

170 mL 177.73 mL 172.38 mL 178.42 mL

220 mL 218.34 mL 227.13 mL 230.45 mL

FIGURE 8 | Liquid volume estimation results for different viewpoints in real experiments. [Color figure can be viewed at wileyonlinelibrary.com]
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volume data is often a challenging task, and unlike other
methods, our approach is based on a synthetic data set. We
created the SimLiquid20k data set using 20 different container
models and liquid materials, and the network trained on this
data set can transfer well to real‐world scenarios. To explore the
roles of RGB and depth information in the task, we tested dif-
ferent input structures on the synthetic data set. We also con-
ducted evaluations in real‐world scenarios for tasks involving
liquid volumes between 50 and 200 mL, where the average error
was approximately 5%, which is acceptable.

Our approach has some limitations that can be addressed in
future work. First, our method is model‐based and requires pre‐
modeling containers with similar shapes and sizes. Addition-
ally, the system's performance declines when the liquid is in
motion, and unstable liquid volume estimates occur during

pouring. For future work, we hope to enable the network to
learn prior knowledge, eliminating the need for container
modeling. We also aim to explore solutions for stable volume
estimation in situations where the liquid surface is unstable.
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